
The Search for Missing Parallel I/O Performance on
the Cori Supercomputer (Extended Abstract)

Matt Bryson, Alex Sim (advisor), Suren Byna (advisor), John Wu (advisor)†
Lawrence Berkeley National Laboratory

National Energy Research Scientific Computing Center (NERSC)†

Email: mbryson@ucsc.edu {asim,sbyna,kwu†}@lbl.gov

Abstract—With scientific computing approaching exascale
rapidly, I/O is becoming the main cause of bottlenecks in High
Performance Computing (HPC). To solve this, next generation
systems such as the NERSC Cori Supercomputer are equipped
with I/O nodes equipped with NVRAM, otherwise known as
burst buffers (BB). BB systems are designed to provide more
I/O throughput than traditional Parallel File Systems (PFS)
that rely on magnetic storage. This has not been the case with
the Cray Burst Buffer (CBB) which is performing at 11.07%
of peak performance when confronted with the popular HDF5
file library. We use the Vector Particle in Cell (VPIC) I/O
kernel to benchmark the system and find potential optimization
strategies. By changing the I/O access pattern of VPIC I/O
kernel we are able to improve performance up to 4.6 times in
some configurations.

I. INTRODUCTION

Burst Buffers bridge the gap between memory and disk
resources on modern supercomputers [1]. Burst buffers are
IO nodes backed by solid state storage and provide compute
nodes inside an HPC access to fast persistent storage [2].
The latest supercomputer at the National Energy Research
Scientific Computing Center (NERSC) called Cori is equipped
with a BB system produced by Cray [3]. The announced peak
bandwidth of the burst buffer on Cori Phase 1 (Cori P1) system
is 750 GB/s and the capacity is 875TB. The Cori P1 burst
buffer is split into 144 burst buffer nodes that can store data in
parallel with each stripe providing 6 GB/s peak performance.
While the IOR benchmark in sequential mode showed 700
GB/s performance, tests from the Scientific Data Management
group at Lawrence Berkeley National Lab with parallel I/O
using HDF5 on 48 burst buffer nodes showed 41 GB/s I/O
performance, which is 15% of the peak performance for the
used 48 nodes. This arises the question, Where is the parallel
I/O time being spent?

II. THE VECTOR PARTICLE IN CELL I/O KERNEL

Vector Particle in Cell is an advanced plasma physics codes
that generates trillions of particles [4]. Because of the massive
amount of data that VPIC generates, storing it’s data without
creating an I/O bottleneck is a challenge [4]. To work on I/O
techniques to accelerate this code, Surendra Byna et al. created
an I/O kernel that simulates that output of the full simulation
[4].

The VPIC I/O kernel is a critical tool in our analysis of
the Cori supercomputer for several reasons. Modifying the

source code of the kernel gives us a level of control not
possible with other profiling tools. Additionally, VPIC utilizes
the popular HDF5 scientific file API, which is a file APIs that
has performed poorly on the Cori burst buffer. We use our
control of the kernel to gather various metrics on the Cori
supercomputer.

III. RESULTS

A. Exploratory VPIC-IO Runs

The initial results with the unmodified VPIC-IO kernel were
important to confirm our suspicions that the Cray Burst Buffer
system was not performing optimally with collective I/O. The
results of these initial tests are shown in Figure 1. As we
can see, both systems perform similarly on small scale tests,
but as scale increases the Cori PFS drastically outperforms the
DataWarp system. The best performing test on the Cori Lustre
PFS was the 16K run with 32 processes per node, writing at
176.78 GB/s. This is 25.25% of the peak bandwidth of the
system. Comparing a similar run on the burst buffer system
shows that the system is only running at 11.07% of peak
bandwidth, writing at 61.75 GB/s. This is significantly less
than the IOR benchmark result, showing that the burst buffer
is not handling collective I/O efficiently.

Fig. 1: Cray DataWarp v. Cori Lustre Scratch Exploratory
Results



B. Aggregator Matching

We determined that when the number of BB nodes were not
divisible by the number of aggregator nodes data would be
written unevenly from the aggregator nodes to the burst buffer
nodes, resulting in sub-optimal performance. Our matched
configuration used 64 burst buffer nodes and our unmatched
configuration used 65. The results, shown in Figure 2, show
increased performance. Darshan logs, which provide detailed
performance data per process, show higher I/O variance. The
DVS counters, which list the amount of data written per
process, show twice the data being written by one process.
Matched burst buffer configuration can result in as high as a
86% increase in performance by decreasing this variance and
spreading writes evenly.

Fig. 2: Matched v. Unmatched Burst Buffer & Aggregator
Nodes

C. Independent I/O

Because of solid state disks ability to absorb small I/O
requests, and due to our lack of insight into DataWarp’s
inner workings, we choose to run tests with independent
I/O. Independent I/O runs increased performance 4.6 times
that of the original unmatched runs. This occurred because
the DataWarp and HDF5 mechanisms that were causing
the bottleneck were avoided with the independent I/O run.
Additionally, having a greater number of writing processes
saturated the CBB more effectively. These results are showing
in Figure 3.

IV. CONCLUSION

With Cray DataWarp under performance is common with
typical I/O optimization strategies, such as the utilization of
collective I/O. By ensuring aggregator nodes were divisible
by burst buffer nodes, we were able to improve performance
when using collective I/O. Independent I/O performs well
on this system when compared to collective I/O by avoiding
the collective I/O mechanisms of DataWarp and HDF5 and
saturating the BB nodes. Because of the massive improvement
seen with independent I/O over collective, current applications

Fig. 3: Independent I/O v. Collective I/O

seeking to use any DataWarp or related solid state technology
for HPC should choose to use independent I/O over collective
I/O.

REFERENCES

[1] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the Role of Burst Buffers in Leadership-Class
Storage Systems,” in Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on. IEEE, 2012, pp. 1–11. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6232369

[2] M. Funk, “The What And Why Of Burst
Buffers.” [Online]. Available: http://www.theplatform.net/2015/05/19/
the-what-and-why-of-burst-buffers/

[3] “Cori.” [Online]. Available: http://www.nersc.gov/users/
computational-systems/cori/

[4] S. Byna, J. Chou, O. Rbel, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin,
and others, “Parallel I/O, analysis, and visualization of a trillion
particle simulation,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 2012, p. 59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2389077


